Module code	SB-4324			
Module Title	Herpetology			
Degree/Diploma	Bachelor of Science (Biology)			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	8 hours/week	
		Contact hours	6 hours/week	
Prerequisite	None			
Anti-requisite	None			

Aims

This module is designed to give students a basic understanding of the biology of amphibians and reptiles. The philosophy behind a taxon-oriented module is to encourage students to acquire a multidisciplinary, concept-oriented perspective. Such an approach encourages integration of ideas rather than a focus on details. The module will emphasize ecology, behaviour, biogeography and systematics of the extremely diverse Southeast Asian herpetofauna.

Learning Outcomes

On successful o	compie	etion of this module, a student will be expected to be able to:	
Lower order :	10%	- Describe the basic ecology and physiology of amphibians and reptiles.	
		Understand their conservation needs.	
Middle order :	10%	- Analyse and understand how herpetofauna interact with their environment	
		how they communicate, reproduce, forage, evade parasites as well as how	
		populations and communities assemble, are structured, and maintained.	
Higher order:	80%	- Connect the concepts and approaches in herpetology to predict patterns of	
		species extinction and extirpation to allow a deep understanding of the	
		evolution of life-histories and phylogeographic patterns of assembly in	
		amphibians and reptiles and learn the tools of predictive modelling.	

Module Contents

- -Amphibian and reptile evolution, diversification, and global biogeography
- -Physiological adaptations of amphibians and reptiles
- -Biomechanics
- -Temperature and water relations
- -Energetics
- -Endocrinology and neurobiology
- -Reproduction and life-history
- -Predator-prey interactions
- -Biomedical aspects of poisons and venoms.
- -Role of conservation management
- -Monitoring of amphibian and reptile populations

Assessment	Formative	Tutorial assignments and feedback
	assessment	
	Summative	Examination: 0%
	assessment	Coursework: 100%
		- 2 class tests (40%)
		- 1 mini-project (20%)
		- 2 written assignments (20%)
		- 3 practical reports (20%)