Module code		SC-2222			
Module Title		Functional Groups in Organic Chemistry			
Degree/Diploma		Bachelor of Science (Chemistry)			
Type of Module		Major Core			
Modular Credits		4		Total student Workload	10 hours/week
				Contact hours	4 hours/week
Prereguisite		None			
Anti-requisite		None			
Ainti-Tequisite		None			
The module is designed for students to understand the fundamental principles of important					
functional groups in Organic Chemistry and to apply the theories, concepts and analytical ability in					
laboratory work					
On successful completion of this module, a student will be expected to be able to:					
Lower order : 40% - describe the preparation and reactions of the organic functional					
grouns					
- recognize the different types of organic polymers and describe					rs and describe
		their synthesis and properties; interpret IR, NMR MS spectra			
Middle order : 50% - perform designated experiments during laboratory sessions - apply theories and concepts learnt in the interpretation of experime					ory sessions
					retation of experimental
		observations and results			
Higher order: 10% - present experimental reports in a clear and concise manner					ncise manner
-	- work independently or collaboratively as a team				
Module Contents					
-Preparation and Reactions: Alkenes, alkynes and dienes; mechanism and stereochemistry of					
electrophilic additions. Alkyl halides; mechanisms and stereochemistry of substitution ($S_N 1$, $S_N 2$)					
and elimination (E1, E2) reactions. Alcohols, aliphatic and aromatic amines, aryl diazonium salts					
and phenols; mechanisms and properties. Aldehydes and ketones; mechanisms (nucleophilic					
addition) and properties; Aromatic Chemistry: Electrophilic aromatic substitution, halogenation,					
nitration, alkylation, acylation, sulphonation and substituent effects.					
-Preparation, Reactions and Mechanisms: Organic Polymers; structures, synthesis and properties					
of selected synthetic organic polymers such as plastics and fibers.					
-Infra-red (IR) spectroscopy: Preparation of samples for infrared spectra, assignment and					
interpretation of IR spectra of hydrocarbons, carbonyls and aromatic compounds.					
-Nuclear Magnetic Resonance (NMR) spectroscopy: Spectral interpretation of "H NMR spectra of					
hydrocarbons, carbonyl compounds and aromatic compounds: chemical shift, spin-spin splitting					
(n+1) rule, coupling constant, intensity of signals and integration.					
- Mass spectrometry: Mass spectral behaviour of some common functional groups and					
fragmentation					
nagmentation.					
Assessment	Form	ative	Tutor	ial and feedback	
	asses	sment			
	Sumr	native	Exam	ination: 60%	
	asses	sment	Cours	ework: 40%	
			- 3 Pr	actical reports (20%)	
			- 3 wr	itten assignments (10%) and 3 clas	ss tests (10%)