Module code	SC-2261			
Module Title	Principles of Analytical Chemistry			
Degree/Diploma	Bachelor of Science (Chemistry)			
Type of Module	Major Core			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	None			
Anti-requisite	TG-2201 Principles of Analytical Chemistry for Engineers			

Aims

The module is designed for students to understand the basic principles and learn the experimental techniques of classical titrimetric and gravimetric methods of analysis. The student will also be introduced to common instrumental techniques including chromatography, spectroscopy and electro-analytical methods.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order:	40%	-Understand the basic principles and learn the experimental techniques of classical titrimetric methods of analysis,				
		: · · · · · · · · · · · · · · · · · · ·				
		-Understand the theory behind the instrumental techniques of				
		chromatography, spectroscopy and electro-analytical methods				
Middle order:	50%	- solve calculation problems based on the learnt principles in tutorial sessions				
		- carry out a set of experiments in a practical sessions intending to enhance				
		the students' understanding of the principles and operational techniques				
		of the instruments				
Higher order:	10%	- Interpret the results of experimental problem for the writing up of practic reports based on theoretical knowledge				
		- solve real world experimental problem involving instrumental techniques				
		- work independently and play effectively and collaboratively in a team				

Module Contents

- Tools of analytical chemistry: Chemicals, apparatus and operations in analytical chemistry laboratory; Quality control and standardization; Calculations and statistical treatment and analysis of data.
- Aqueous solution chemistry: Chemical equilibria: acid-base, metal complex, precipitation and redox equilibria, Classical methods of analysis
- Titrimetric methods: Neutralisation, Complexation, Precipitation and Redox titrations
- Gravimetric methods: Precipitation, Extraction and Volatilisation gravimetry
- Analytical separation processes: Solvent extraction, ion-exchange, multistage separation processes.
- Introduction to instrumental methods of analysis: Chromatography; Spectroscopy; Electroanalytical techniques.

Assessment	Formative	Tutorial and feedback
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 4 practical reports (20%)
		- 2 written assignments (10%);
		- 2 class tests (10%)