Module code	SC-4311			
Module Title	Semiconductors as Photocatalysts			
Degree/Diploma	Bachelor of Science (Chemistry)			
Type of Module	Major Option			
Modular Credits	2	Total student workload	5 hours/week	
		Contact hours	2 hours/week	
Prerequisite	SC-1211 Fundamentals of Inorganic Chemistry			
Anti-requisite	None			

Aims

To understand the chemistry of semiconductors such as metal oxides and chalcogenides in terms of photocatalysis involving synthesis and various applications related with energy and environment.

Learning Outcomes:

On successful completion of this module, a student will be expected to be able to:

Lower order:	40%	- understand the basic chemistry of semiconductors such as metal oxides and
		chalcogenides.
		understand the basics of catalysis.
		- understand the basics of photocatalysis involving semiconductors and its nanocomposites.
		identify the different types of light active semiconductors and its
		nanocomposites.
Middle order:	40%	synthesis of photocatalytic semiconductors and its nanocomposites.
		- characterization of the synthesized photocatalytic semiconductors and its
		nanocomposites.
		interpretation of the results of the analyses.
Higher order:	20%	apply the concepts of photocatalysis in real applications related with
		energy and environment.
		utilize the synthesized photocatalytic semiconductors and its
		nanocomposites for various applications such as air and water pollution
		control, water splitting etc.

Module Contents

- Chemistry of semiconductors,
- Chemistry of metal oxides and chalcogenides as semiconductor,
- Potentials of metal oxides and chalcogenides as catalysts,
- Promises of metal oxides and chalcogenides as photocatalysts,
- Different types (doped and undoped) of light (UV and Visible) active semiconductors,
- Syntheses of photocatalytic semiconductors and its nanocomposites,
- Characterization of the synthesized photocatalytic semiconductors, and
- Applications of the synthesized photocatalytic semiconductors for various purposes.

	Formative	Tutorial and feedback
Assessment	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 2 class test: 20%
		- 2 oral presentation: 20%