Prof. Victor Didenko



Educational Qualifications: MSc (Odessa), Ph.D. (Kazann), DrSc (Odessa)

Research Interests

  • Operator theory.
  • Integral equations.
  • Approximation of pseudo-differential operators.
  • Wavelets.


  • SM-2206/SM-4327 Real Analysis.
  • SM-2207/SM-4321 Complex Analysis.

Research publications

  • Didenko Didenko V.D. and B. Silbermann. (2016) Generalized Toeplitz plus Hankel operators: kernel structure and defect numbers. Complex Analysis Operator Theory, 10, (2016); DOI 0.1007/s11785-015-0524-1
  • Didenko V.D., Tang T., and A. M. Vu. (2015) Spline Galerkin methods for the Sherman-Lauricella equation on simple contours with corners. SIAM J. Numerical Analysis, 53, Issue 6, pp. 2505-2846
  • Didenko, V. D. & Silbermann, B. Some results on the invertibility of Toeplitz plus Hankel operators. Ann. Acad. Sci. Fenn. Math. 39, 443–461 (2014).
  • Didenko, V. & Silbermann, B. The Coburn-Simonenko theorem for some classes of Wiener-Hopf plus Hankel operators. Publ. l’Institut Math. 96, 85–102 (2014).
  • Didenko, V. D. & Silbermann, B. Structure of Kernels and Cokernels of Toeplitz Plus Hankel Operators. Integr. Equations Oper. Theory 80, 1–31 (2014).
  • Didenko, V. D. & Rozhenko, N. A. A class of stationary stochastic processes. Stud. Math. 222, 191–205 (2014).
  • Didenko, V. D. & Helsing, J. On the Stability of the Nyström Method for the Muskhelishvili Equation on Contours with Corners. SIAM J. Numer. Anal. 51, 1757–1776 (2013).