Module code SB-4201	
Module Title Population Genetics, Systematics and Evolution	
Degree/Diploma Bachelor of Science (Biology)	
Type of Module Major Core	
Modular Credits 4 Total student Workload 8 hours/week	
Contact hours 6 hours/week	
Prerequisite SB-2211 Genetics	
Anti-requisite None	
Aims	
This module will teach the foundations of population genetics and its importance for ecolo	ical and
evolutionary studies. Students will be introduced into the concept of species and the ch	allenges
associated with their intra- and inter-specific classification. The history of life on Earth	will be
explored based on latest geological, fossil and phylogenetic analyses.	
Learning Outcomes	
On successful completion of this module, a student will be expected to be able to:	
Lower order : 40% - Describe the major principles of population genetics	
- Describe the major species concepts	
- Describe the major intra- and inter-specific classification methods	
- Describe how natural selection works and how it contributes to dive	rsity
- Describe the major episodes of life on Earth	
Describe the major events in Southeast Asian biogeography	
Middle order : 40% - Explain the Hardy-Weinberg Law and its application	
- Explain the difficulties in circumscribing and classifying species	
- Explain how variation within species can lead to new species	
- Explain how geology and the environment have shaped life on Earth	
Higher order: 20% - Classify groups of specimens, both below and above species level	
- Predict what happens to population genetic structure under differe	it
selection pressures, population sizes and mutation rates.	
Module Contents	
- Molecular techniques for studying genetic variation within and between species	
- The Hardy-Weinberg Law/Wodel, equilibrium and its assumptions	
- Species concepts, taxonomy, evolution and natural selection	
- The hidjor models and methods bennit intra- and inter-specific classifications	
Accessment Ecormative accessment Tutorial assignments and foodback	
Assessment Formative assessment Evamination: 60%	
Loursework: 40%	