Module code	SC-4318			
Module Title	Nuclear Chemistry and f-block elements			
Degree/Diploma	Bachelor of Science (Chemistry)			
Type of Module	Major Option			
Modular Credits	2	Total student Workload	5	hours/week
		Contact hours	2	hours/week
Prerequisite	SC-1211 Fundamentals of Inorganic Chemistry			
	SC-2212 Transition Metal Chemistry			
Antirequisite	None			

Aims

This module is designed for students to gain an understanding of nuclear reactions and their role in the chemical sciences, with a particular emphasis on f-block elements.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order:	40%	- Understand the nuclear properties and reactions involving the nucleus and		
		the transformation of the nucleus that leads to it being radioactive		
		- Recognise the two series of f-block elements, their physical and chemical		
		properties		
		- Assess the differences between f-block and d-block chemistry		
Middle order:	40%	- Research literature and organise information coherently		
Higher order:	20%	- Communicate and work-cooperatively in a group/team		
		- Presentation skills		

Module Contents

- Nuclear theory

Radioactive decay, nuclear stability and mass-energy relationships

Interaction of radiation with matter, detection methods

Nuclear reactors, neutron activation analysis

Applications of radioactivity, nuclear medicine, dating techniques

- f-block elements

Lanthanides and actinides – abundance and distribution

General properties including oxidation states, electronic configurations

Magnetic and spectral properties

Extraction and separation of lanthanides and actinides

Coordination chemistry of f-block

	•	
Assessment	Formative	Tutorial and feedback
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 2 written assignments (20%)
		- 2 class tests (20%)