Module code		SM-4314				
Module Title		Applied Mathematical Methods II				
Degree/Diploma		Bachelor of Science (Mathematics)				
Type of Module		Major Option				
Modular Credits		4	Total student Workload	10	hours/week	
			Contact hours	4	hours/week	
Prerequisite		SM-4311 Applied Mathematical Method I				
Anti-requisite		None				
Aims						
The module is designed to teach mathematics major students a suite of advanced mathematical						
tools and techniques essential for applications in mathematical modelling and analysis.						
Learning Outc	omes					
On successful completion of this module, a student will be expected to be able to:						
Lower order :	40%	- calculate the ${a \ }$	gradient, divergence, curl and Lapla	acian of	fstandard	
		multivariate	functions, in Cartesian and a select	ion of o	curvilinear coordinate	
		systems; calo	ulate the Fourier transforms of sta	ndard	functions	
Middle order :	40%	- use Green's fι	inctions or Fourier transforms to so	olve the	e standard ordinary	
		and partial d	ifferential equations of mathemati	cal phy	sics; solve simple	
		examples of	Volterra and Fredholm integral equ	uations		
Higher order:	20%	- use index nota	ation to express and prove the star	ndard ic	lentities of vector	
		calculus				
		- formulate and	l solve problems in the physical sci	ences ir	nvolving partial	
		differential o	r integral equations		<u> </u>	
		- work indepen	dently			
Module Conte	nts		,			
	1113					

 Vectors and Tensors: Review of vector, dyadic and higher order tensor representations; the grad operator, curvilinear coordinates. Generalised Stokes and Divergence theorems, Green identities and Green functions.

- Fourier Transforms and Distribution Theory: Fourier integral theorem; exponential, cosine and sine Fourier transforms. Convolution theorem. Application of integral transforms to boundary value problems. Distribution theory.
- Integral Equations: Volterra and Fredholm integral equations. Solution by integral transforms, or by conversion to differential equations. Neumann iterative method, separable kernels, Fredholm method.

Assessment	Formative	Tutorial and feedback.
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 2 class tests (40%)