Module code	SM-4325			
Module Title	Integral Equations			
Degree/Diploma	Bachelor of Science (Mathematics)			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	10	hours/week
		Contact hours	4	hours/week
Prerequisite	SM-2203 Linear Algebra and its Applications			
Anti-requisite	None			

Aims

To study properties of Fredholm Integral equations and methods of their solution.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order :	40%	- know basic principles of functional analysis
Middle order :	40%	-find exact and approximate solutions for classes ofintegral equations
Higher order:	20%	- investigate Fredholmn properties and solvability of some classes integral equations

Module Contents

- Normed spaces. Completeness. Banach Spaces. Spaces with inner product. Hilbert Spaces.
- Linear operators. Boundedness and continuity. Space of bounded linear operators B(X).
- Series in B(X). Invertibility. Banach theorem. Spectral radius. Integral operators and their norms.
- Fixed point theorem. Volterra integral equations. Solvability and uniqueness of solutions.
- Connections between Volterra and Fredholm integral equations.
- Fredholm equations with bounded kernels. Resolvent and iterated kernels. Equations with square summable kernels. Equations with degenerate kernels. Solution of Fredholm equations with degenerate kernels.
- Fredholm theory for equations with degenerate kernels. Summable kernels. Hilbert-Schmidt theory. Integral equations with weakly singular kernels.

Assessment	Formative	Tutorial and feedback.
	assessment	
	Summative	Examination: 60%
	assessment	Coursework: 40%
		- 1 class test (20%)
		- 1 assignment (20%)