Module code	SP-2306			
Module Title	Condensed Matter Physics			
Degree/Diploma	Bachelor of Science (Applied Physics)			
Type of Module	Major Option			
Modular Credits	4	Total student Workload	8	hours/week
		Contact hours	4	hours/week
Prerequisite	None			
Anti-requisite	None			

Aims

Condensed matter physics involves fundamental studies of the properties of crystalline and non-crystalline materials at the microscopic level. The overall aims are: to relate these studies to the applications of materials in microelectronic, optoelectronic, and other industries, and to provide a sound foundation for research and innovation in the field of condensed matter.

Learning Outcomes

On successful completion of this module, a student will be expected to be able to:

Lower order :	30%	 Identify crystal structures of solids, and explain electronic band structures. Understand the theory on free electron model and models of heat capacity in solids.
Middle order :	60%	 - analyse X-ray diffraction patterns - analyse the electron energy distribution in solids using the Fermi – Dirac function - applying the principles of semiconductors to solid state devices
Higher order:	10%	 evaluate the outcome of the analyses work in a group to relate theory with application, and communicate individually in the form of presentation or report.

Module Contents

- Crystal structures, bonding in solids, crystal diffraction.
- Crystal dynamics, lattice heat capacity, concept of phonon, thermal conduction.
- Free electron model, quantum theory of metals, Fermi distribution, electron transport
- Electron band structure, semiconductors, origin of band gap
- Solid state devices, p-n junction, transistors, diode, solar cells etc.

Assessment	Formative	Problem-solving, group discussions and feedback
	assessment	
	Summative	Examination: 60%
	assessment Coursework: 40%	
		- 3 assignments (24%)
		- 1 test (8%)
		- 1 presentation or report (8%)