Module code | SP-1302
Module Title | Electricity and Magnetism
Degree/Diploma | Bachelor of Science (Applied Physics)
Type of Module | Major Option
Modular Credits | 4
Total student Workload | 10 hours/week
Contact hours | 4 hours/week
Prerequisite | A Level Physics or equivalent
Anti-requisite | SP-1202 Electricity and Magnetism,
TG-1307 Engineering Electromagnetics

Aims
The module is designed to provide the students with the fundamental theoretical and practical knowledge of Electricity and Magnetism and prepare them for more advanced study in this area.

Learning Outcomes
On successful completion of this module, a student will be expected to be able to:

| Lower order | 30% | - describe the interaction of electromagnetic waves with matter
- Identify the paths of charges subject to both electrostatic and magnetic fields
| Middle order | 50% | - perform calculations to determine the electric field distributions for complex arrangements of charge
- calculate the magnetic fields due to moving charges in wires and solenoids
- measure magnetic fields in coils and wires using for example Hall probe and search coil techniques
- perform calculations on the interaction of electromagnetic waves with matter
- measure charge carrier mobilities in for example semiconductors using electromagnetic techniques
- use software to plot and interpret electric and magnetic field distributions for various charge arrangements
- apply theoretical skills developed in the lectures to analysing and solving problems in electricity and magnetism
| Higher order | 20% | - demonstrate their ability to use laboratory equipment by performing experiments relevant to the module
- use an investigative approach to study employing resources such as books, lecture notes, the Internet and other sources.

Module Contents
- Introductory vector calculus
- Electric charge, Coulomb’s law, electric field and field lines
- Electric dipole, electric potential, Gauss’ law, electric flux
- Properties of capacitors, storage of electrostatic energy, dielectrics
- Magnetic field, Hall effect, magnetic dipole
- Magnetic fields due to currents, the Biot-Savart law, Ampere’s law
- Faraday’s law of induction, Lenz’s law, inductance, storage of electromagnetic energy, eddy currents, magnets and magnetic materials

Assessment
| Formative assessment | In-class questions, tutorials and feedback
| Summative assessment | Examination: 50%
Coursework: 50%
- 2 work-based problems (20%)
- 2 assignments (20%)
- 1 class test (10%)