Source rock characteristics and hydrocarbon generation potential in Brunei-Muara district, Brunei Darussalam: a comparative case study from selected Miocene-Quaternary formations

Abstract

A comparative analysis on source rock properties has been carried out on the Miocene-Pliocene formations as well as the Quaternary terrace deposits using Rock–Eval pyrolysis results and organic petrography as well as some biomarkers results. Samples were obtained from outcrops of the Quaternary terrace deposits, Pliocene-aged Liang Formation together with the Miocene Miri and Setap Shale formations in Brunei-Muara district, with sample lithologies ranging from coal, coaly shale, shale and lignitic sand. High total organic carbon (TOC) and S2 values ranging from 41.8 to 62.4% and 7.40 mg HC/g rock to 122 mg HC/g rock, respectively, are identified in coals of the terrace deposit, Liang and Miri formations, making these as the best potential source rock due to the “good to excellent” generating potential. Meanwhile, a “fair to poor” potential is exhibited for the coaly shale, shale and lignitic sand samples as a result of their low TOC, HI and S2 values. The organic matter is composed of kerogen type III (gas prone) and type II-III (mixed oil and gas prone). Organic matter in all studied formations originate from a terrestrial-source, as proven by the abundance of huminite. Organic petrographical and biomarkers studies suggest that the coals and lignitic sand samples were deposited in a mangrove-type mire in a lower delta setting, under oxic and limnic to limnotelmatic conditions, except sample DD2-1, which is deposited in a less water-saturated environment. The samples display the presence of bi-modal and normal distribution of n-alkanes. For all of the samples, the dominating plant types in the palaeomire are of soft, herbaceous plants and this is supported by the low vegetation index and moderate Paq values. All the studied samples are thermally immature to early mature, as exhibited by the Tmax values that range from 300 to 437 °C and vitrinite reflectance readings of 0.22% to 0.46%.

Publication
Journal of Petroleum Exploration and Production