This study explored the effects of Neodymium-doped graphene quantum dots (NdGQDs) on improving the performance efficiency of TiO2 based dye-sensitized solar cells (DSSCs). By employing in-situ physical assisted mixing, DSSCs with optimized NdGQDs in TiO2 photoanodes showed a power conversion efficiency of 8.76 %, a significant improvement compared to the 6.01 % efficiency of pristine TiO2-based DSSCs under 100 mW cm⁻2 illumination (AM 1.5). Notably, the short-circuit current density increased by 74 %. HRTEM analysis revealed that the NdGQDs have a size range of approximately 7–9 nm. UV–visible spectroscopy and Mott-Schottky analysis revealed a positive shift in the Fermi level, promoting better electron transfer and increased photocurrent density at the expenses of the open circuit voltage. Electrochemical impedance spectroscopy characterization of DSSCs incorporating NdGQD-modified photoanodes revealed a reduction in electron transfer resistance at the photoanode|dye|electrolyte interface, accompanied by an increase in recombination resistance within the device suppressing the electron recombination rate.
Add the full text or supplementary notes for the publication here using Markdown formatting.